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ABSTRACT 

The paper contains a brief account of ideas and results, which axe described 

in [1] and [2] with details and proofs. The subject of the paper is algebraic 

geometry in arbitrary algebraic structures. 

1. I n t r o d u c t i o n .  T h e  m a i n  no t i ons  

1 . 1 .  C L A S S I C A L  SITUATION. First, let us recall some well known background. 

Let P be a ground field, L its extension, and X = ( x l , . . . , x n }  a set of 

variables. 

Consider a ring of polynomials P[X] and an affine space L (n). There is a Galois 

correspondence between subsets T in P[X] and subsets A in L (n). If  T is a subset 

in P[X] then T' = A is a set of all points a = ( a l , . . . ,  an), a i e  L, which are the 

roots of every polynomial from T. Each A of such kind is an a l g e b r a i c  v a r i e t y  

with the given X, P and L. If, further, A is a subset in L (n), then A' = T is a 

set of all polynomials f ( x l , . . .  ,x~) such that  every point of A is a root of the 

polynomial f .  The set T = A' is always an ideal in P[X]. Let us call such 

an ideal a c losed  one, or, more precisely, an L-c losed  ideal .  Every algebraic 

variety is determined by a finite set T. 

There is another approach, leading to wide generalizations. Denote by O the 

variety of associative commutat ive algebras with unit over the field P. We call 

it the c lass ica l  va r i e ty .  The algebra W = P[X] is the free algebra in 0 over 
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the set X. The field L is also considered as an algebra in O. Every point 

a = ( a l , . . . , a ~ )  specifies a mapping #: X --* L, #(xi) = a~, i = 1 , . . . , n .  The 

mapping determines an algebra homomorphism #: W ~ L. Now we consider a 

point as a homomorphism, and we identify the space L (~) with Horn(W, L). A 

point # is a root of a polynomial f if f E Ker #. The Galois correspondence can 

be rewritten as 

A = T' = {#{ T C Ker#}, 

T = A  ~= N Ker#. 
/tEA 

Now, A is a subset in the "affine space" Horn(W, L). 

The algebraic variety generated by a set A is the set A" = (A~) ~, and the 

L-closure of T is T" = (T~) '. 

For every L ~ P, P being fixed, we can consider a category of algebraic 

varieties, denoted by Kp(L). Its objects are pairs (A, X), where A is an algebraic 

variety with a given set of variables X. Both A and X can vary, while P and L 

are fixed. Morphisms will be defined in 2.1. 

The principal problem arising here is to study relations between fields L1 and 

L2 which render the categories Kp(L1) and Kp(L2) isomorphic. We solve this 

problem in the general situation for arbitrary varieties O and arbitrary algebras 

in e .  

Definition 1: Two extensions L1 and L2 of the ground field P are called 

geome t r i ca l l y  equiva len t  if, for every finite X, an ideal T in P[X] is Ll-closed 

if and only if it is L2-closed. 

It can be checked that  if L1 and L2 are geometrically equivalent, then the 

corresponding categories are isomorphic. So, the problem is to consider the 

converse question. 

If the ground field P is algebraically closed then, according to the Hilbert 

Nullstellensatz, every L1 and L2 are equivalent. In the general case, if P is not 

closed, the problem of equivalence of two fields is difficult. However, it can be 

solved in particular cases. 

(1) It is easy to see that if L1 and L2 are P-isomorphic, then they are equivalent. 

(2) If L1 and L2 are finite extensions of the field P, then equivalence implies 

isomorphism. 
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(3) Let L be a field, considered as an algebra over P,  and L be an ultra-power 

of this algebra. L is also a field, which is an extension of the field P.  Then 

L and L are geometrically equivalent. 

(4) A problem. When are really closed fields L1 and L2 geometrically 

equivalent? 

1.2. GENERALIZATIONS. Generalizations are considered in detail in [1], but  in 

contrast, in this paper we restrict ourselves to one-sorted algebras. 

Assume that  O is an arbitrary variety of algebras of signature ~2. It can be the 

classical variety, as well as a variety of groups, semigroups, etc. 

Take a set of variables X, either finite or infinite, and let W = W ( X )  be the 

free algebra over X in O. 

For every algebra G E O we regard a corresponding affine space as a set of 

points Horn(W, G). Equations in W have the form w = w ~, where w, w ~ E W. 

A point # satisfies this equation if the equality w" = w ~ holds in G, i.e., if the 

pair (w, w ~) lies in the kernel Ker #. A kernel of a homomorphism is, generally 

speaking, a congruence in W, [5], while a set T is a binary relation in W, which 

consists of pairs (w, wt). 

We establish a Galois correspondence between relations T and subsets A in 

Horn(W, G) by the rule described above. Let us rewrite it for the new situation. 

If T is a binary relation, then 

A = T' = {pIT C Ker tt}. 

We call A an a lgebra i c  v a r i e t y  for given O and G. 

If A is a subset in Hom(W, G), then 

T = A  ~= N Ker#.  
~eA 

A ~ is always a congruence in W. We call it G-closed.  If A is an arbitrary set 

then its closure up to the variety is A", and if T is a congruence in W then its 

G-closure is T" .  

According to the definition, T" is the intersection of all Ker # with the property 

T C Ker# .  This implies that  T" is the intersection of all congruences T in W, 

containing T, such that  there is an injection W / 7  --* G. 

Let us point out one more characteristic of T". First we introduce a special 

notion. Let G and H be algebras in ~.  Consider a set Hom(H, G). Denote by 
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(G - Ker)(H)  the intersection of kernels of all homomorphisms of this set. It is 

a congruence in H. 

Let now T be a congruence in W = W(X) ,  and #0: W -+ WIT be a natural 

homomorphism. 

T H E O R E M  1: 

T" = #01(G - Ker)(W/T). 

Algebras G1 and G2 from O are called X-equ iva len t ,  if every congruence T 

in W = W(X) is Gl-closed if and only if it is G2-closed. 

The minimal G-closed congruence in W(X) is a congruence Idx(G) ,  i.e., a 

congruence of identities of the algebra G in W(X). If G1 and G2 are equivalent, 

then Idx(G1) = Idx(G2).  It follows from Theorem 1 that G1 and G2 are X- 

equivalent if and only if 

(G1 - -  Ker)(W/T) = (G2 - Ker)(W/T) 

for every congruence T in W. 

Definition 2: Algebras G1 and G2 are called g e o m e t r i c a l l y  equ iva len t ,  if they 

are X-equivalent for every finite X. 

It can be checked directly that  an algebra G and any Cartesian power of G are 

geometrically equivalent. 

As usual, Var G denotes the variety of algebras, generated by the algebra G. 

THEOREM 2: If G1 and G2 are geometrically equivalent, then VarG1 = VarG2. 

This means that  G1 and G2 have the same equational theory. In particular, a 

commutative group cannot be equivalent to a noncommutative one. 

Consider two finite sets X and Y and let 

s: w ( Y )  -~ w ( x )  

be a homomorphism of free algebras. Given G, s has a corresponding map 

g: Hom(W(X),  G) ~ Hom(W(Y),  G)) 

given by the rule: g(v) -- vs for every v C nom(W(X) ,G) ) .  Here, v s ( y )  = 

~(~(u)). 
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Define actions of a homomorphism s on the sets of points A and on the binary 

relations T. 

Let A C Hom(W(X) ,G) .  Then As = B = {vs, v 6 A} is a subset in 

Hom(W(Y),  G). 

Let now B C Hom(W(Y),  G). Then A = sB is a subset of Hom(W(X),  G), 

defined by: v E sB  if us E B. 

Let T be a binary relation in W ( Y ) .  Then sT is a relation in W(X) ,  determined 

by the rule: w(sT)w'  if there are w0, w~ 6 W ( Y )  such that s(wo) = w, s(w~) = w' 

and woTw' o. 

If T is a relation in W ( X ) ,  then we define the relation Ts in W ( Y )  as w(Ts)w'  

r s(w)Ts(w') .  If T is a congruence in W ( X ) ,  then Ts is a congruence in W ( Y ) .  

THEOREM 3: 

(1) I f T  is a binary relation in W ( Y ) ,  then 

(sT)' = sT.' 

(2) I f  A is a subset in Hom(W(X),  G), then 

(As)' = A' s. 

(3) I f  s is an isomorphism, B C Hom(W(Y), C), then 

(sB) '  = sB'.  

COROLLARY I: 

(1) I f  B = T' is an algebraic variety in Hom(W(Y),  G), then sB  is an algebraic 

variety in Hom(W(X),  G). 

(2) I f  T = A' is a G-closed congruence in W ( X ) ,  then Ts  is a G-closed 

congruence in W ( Y ) .  

(3) I f  s is an isomorphism and T = B'  is a G-closed congruence in W ( Y ) ,  then 

sT  is a G-closed congruence in W ( X ) .  

Theorem 3 is essentially used in Sections 2 and 3. 
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2. A c a t e g o r y  of  a lgebra ic  var ie t i es  

Isr. J. Math. 

2.1. PRELIMINARIES. For a fixed O and G E O, consider the category Ko(G). 

Its objects are algebraic varieties (A, X) where X is finite and can vary. Let us 

define morphisms. Let (A, X) and (B, Y) be given. Consider homomorphisms 

s: W(Y)  --* W(X) ,  such that  vs E B for any v E n.  Homomorphisms s and s' are 

equivalent, if vs = vs ~ for any v E A. Classes ~ of equivalent homomorphisms are 

morphisms ~: A ~ B. Multiplication of classes is determined by multiplication 

of representatives. This leads to the category Ko(G). 

Define, simultaneously, a category CO (G). Its objects are algebras W ( X ) / T ,  

with G-closed congruence T in W(X).  Morphisms are homomorphisms of such 

algebras. Co (G) is a subcategory in O and, moreover, in the category Var G. 

THEOREM 4: Categories Ko(G) and Co(G) are dually isomorphic. 

The passage between categories is given by 

(A, X) ~ W(X) /A ' .  

Now let Oo be a subvariety in O and G E O0. Then we can consider the 

category Koo (G). 

THEOREM 5: Categories Ko(G) and Koo(G) are canonically isomorphic. 

Thus, we can proceed from any O0, and therefore the category Ko(G) depends 

up to isomorphisms of categories only on the algebra G. In particular, one can 

take Oo = VarG. Denote Kvaro(G) by Kc .  

2.2. SIMILARITY OF ALGEBRAS. The notion of geometrical similarity of 

algebras generalizes that  of geometrical equivalence of algebras. 

Let us start  with several remarks about congruences T in free algebras W = 

W(X) ,  X = { x l , . . . ,  x~}. Given T, define a relation p = p(T) on the semigroup 

of endomorphisms End W. We set vpv', v, v t E End W, if and only if v(w)Tv'(w) 

for any w E W. In fact, p is an equivalence on the semigroup End W. Let us show 

that  if wlTw2, then there are w and vpv' such that v(w) = wl and v'(w) = w2. 

In other words, the congruence T can be restored by the relation p. Define v and 

v' by v(xl) = W l ,  / J (X l )  = w2, l ] ( x i )  = l ] l ( x i )  = x i ,  i r 1. Then v(x)Tv'(x) for 

every x E X. This implies that  v(w)Tv'(w) for every w e W. Hence, vpv'. If 

we take xl  for w, then v(w)Tv'(w), which represents wlTw2. 



Vol. 96, 1996  VARIETIES OF ALGEBRAS AND ALGEBRAIC VARIETIES 517 

We would like to mention that if T is a fully characteristic congruence, then 

p = p(T) is a congruence in the semigroup End W and the semigroup End W/p 

is isomorphic to End(W/T). 

Let us pass to the notion of similarity of two algebras G1 and G2 from e .  We 

start  with the case when Var G1 = Var G2 = (9. This case holds true if O is a 

classical variety, the field P is infinite, and L1 and L2 are its arbitrary extensions, 

i.e., Var L - e for every L. 

Consider a category ~0 which is a subcategory in (3. Objects of the category 

C~ are algebras W(X)  free in O with finite X; morphisms are homomorphisms 

of these algebras. Now let qo: ~0  --* ~0  be an automorphism of this category. 

Assume that  ~ preserves dimension: if ~(W(X))  = W(Y),  then X and Y are of 

the same power. For the classical O, for a variety of groups and in some other 

cases this additional condition is fulfilled automatically, but  sometimes it is not 

true, since the range of free algebras in some O is not unique. 

Proceeding from a given ~, determine a relation between congruences in W 

and ~(W) for any W. 

Let p be an equivalence on End W. Define ~(p) on End ~(W) by: 

/z~(p)~' r r (/z)p~-i (/~'). 

Now let T be a congruence in W and T* be a congruence in qo(W). We write 

T~T* if p(T*) = ~(p(T)). 

Definition 3: Algebras G1 and G2 are similar if for an automorphism ~ and 

every W the corresponding relation qo establishes bijection between Gl-closed 

congruences in W and G2-closed congruences in ~(W), and this bijection is well 

coordinated (in some natural sense, see [2]) with morphisms in ~0 .  

If G1 and G2 are equivalent, then they are similar. We can take a trivial 

automorphism for qo. 

There is a situation when similarity leads to equivalence. We call an automor- 

phism ~ inne r ,  if for every W there is an isomorphism sw: W --* ~(W) such 

that  for every u E End W, 

~(u) = SwlUSw. 

THEOREM 6: I f  G1 and G2 are similar under inner automorphism ~, then they 

are equivalent. 

This theorem follows from Theorem 3. 
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Let us give a general definition of the notion of similarity between algebras. 

Let {91 and {92 be two subvarieties in the variety {9. Take categories of free 

algebras C~ and C~ for {91 and ~2 respectively, and assume that these 

categories are isomorphic, with ~ an isomorphism between them. Denote ob- 

jects in c O  by W I ( x )  and in C o by W2(y) .  As before, we assume that if 02 
~(WI(X)) = We(Y), then X and Y have the same power. The presence of such 

isomorphism ~ does not mean that {91 and 02 coincide. 

Once more we associate congruences in W 1 and ~(W 1) = W e, and write 

T~T* r p(T*) = ~(p(T)). 

Now let G1 C O1 and G2 E 02. These algebras are similar under the isomorphism 

if the relation ~ establishes a bijection between Gl-closed congruences in W 1 

and G2-closed congruences in W 2 = ~(W1), for every W 1 = W I ( x ) ,  and the 

coordination with morphisms holds. 

Definition 4: Algebras G1 and G2 are similur if they are ~-similar under some 
0 and 0 between Cw,. a, Cv~, as" 

If algebras G1 and G 2 a r e  equivalent, then they are similar. As we already 

know, equivalence of G1 and G2 implies Var G1 = Var G2. It remains to take a 

trivial automorphism ~. 

2.3. ISOMORPHISM OF CATEGORIES. According to [1], if G1 and G2 are 

geometrically equivalent, then the categories Ko(G1) and Ko(G2) are isomor- 

phic. Now we deal with the opposite direction. An isomorphism 

F: Ko(a l )  ---, I(e(a2) 

induces an isomorphism of categories 

CVarGI(G1) = CG1 and Cvar G2(G2) = CG2. 

Let ~: Ca1 ~ Ca2 be this induced isomorphism. Suppose that  ~5 satisfies the 

following additional conditions. 

C-2r al is contained in the category Ca1 as a subcategory. Similarly, Ca2 

contains C~ a2" Recall that C~ is a category of free algebras of finite range 

in O. 
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We assume that  the functor (I) induces an isomorphism ~ of categories C O Var G1 
and C~ a2, which preserves dimension. By the definition, ff)(W) = qo(W). 

Assume further that ~(W/T) = ~(W)/T* always holds. Here, T is a Gl-closed 

congruence in W and T* is a G2-closed congruence in qo(W), which depends on 

4) and T. Lastly, if PT: I/V ---0 WIT is a natural homomorphism, then 

(I)(#T): ~(W) --* ~(W/T) = (p(W)/T* 

is also a natural homomorphism. 

Let us motivate these conditions and then return to the definition of the cat- 

egory Ko(G). Objects of this category are the pairs (A, X); A is an algebraic 

variety, associated with the free algebra W(X). If (B, Y) is another object, then 

a morphism a: (A, X) ~ (B, Y) acts only on left parts and we write a: A ~ B. 

Actually, we should consider also s: W(Y) ~ W(X),  inducing ~, and regard a 

morphism as a pair (c~, s). In the transition to algebras W(Y)/B'  and W(X)/A' 
this means that  the commutative diagram 

w ( Y )  s . w ( x )  

W(Y)/B' ~='~, W(X)/A' 

holds true. Here, ~: W(Y)/B' ~ W(X)/A' is a morphism in the category Co (G), 

but s, #1 and #2 are not, in general, because W(Y) and W(X) are not always 

objects of the category Co (G). They are objects of this category if Var G = (9. 

This is the situation of classical geometry. 

In order to eliminate this inconvenience in the general case, we pass from the 

variety (9 to the variety (91 = VarG. Free algebras in (91 are already objects of 

the category Col (G). Now we can consider morphisms in the category KOl (G) 

as pairs (a, s): (A, X) ~ (B, Y), for which the diagram above holds true in the 

category Col (G). Take algebras G = G1, and G~, with VarG2 = (92. Consider 

an isomorphism 

F: Kol (GJ = KG, --~ Ko~(G2) = KG2. 

Here, F(A, X) = (B, Y), where X and Y have the same power. For every 

morphism (c~,s): (A1,X1) --~ (A2,X2) in Ko~(G1), associate a corresponding 

morphism F(a, s) = (a', s'): (B1, }'1) --* (B2, Y'2). We have also an isomorphism 

(I): C~1 (a l )  ~ CO2 (a2)" 
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For the pair (a, s) we have the following diagram in Co~ (G1): 

W l  (X2) s , W l  ( X l )  

WI(X2)/A,2 ~ , WI(X1)/AI 

Applying ~, we get a new diagram: 

6p(WI(X2)) r * (I)(WI(X1)) 

�9 (.2/1 

�9 (W'(X2)) 

It is natural that  this diagram should lead to coordination for the pair (a',  s'). 

This, in its turn, means that  ~(s) = s': W2(Y2) ~ W2(y1), ~(a)  = a ' .  Thus, the 

functor �9 transforms C~ into C~2 and determines the isomorphism ~. Homo- 

morphisms ~(#2) and ~(#1) must be natural, and then ~(W1/T) = ~(W1)/T *. 

This explaines the conditions above. 

Definition 5: An isomorphism Ko(G1) ~ Ko(G2) is called correc t ,  if for 

�9 : Ca1 ~ Ca2 the conditions above hold true. 

3. M a i n  resu l t s  

3.1. THE GENERAL CASES. 

THEOREM 7: Categories Ko(G1) and Ko(G2) are correctly isomorphic if and 

only if algebras G1 and G2 are similar. 

Using the well known association, we call a semigroup S per fec t ,  if every 

automorphism of S is inner and is induced by an invertible element from S. 

Definition 6: A variety e is called per fec t  if for every free algebra W(X) in O, 

where X is sufficiently large, the semigroup End W(X) is perfect. 

THEOREM 8: Let G1 and G2 be algebras in 0, Var G1 = Var G2 = 00, where 0o 

is perfect. Then, if the categories Ko(G1) and Ko(G2) are correctly isomorphic, 

the algebras G1 and G2 are geometrically equivalent. 



Vol. 96, 1996  VARIETIES OF ALGEBRAS AND ALGEBRAIC VARIETIES 521 

PROBLEM 1: For which P is the classical variety perfect? In other words the 

question is whether the semigroups of endomorphisms of algebras of polynomials 

for sufficiently large X are perfect. 

Which varieties are perfect in general? What about the variety of all groups? 

Theorem 9 relates to arbitrary isomorphisms (not necessarily correct). Let a 

subclass O0 be chosen in the variety O (Oo may be not a variety). Consider 

algebras H -- W ( X ) / T  in O; W ( X )  is a free in O algebra of a finite range; T 

is its congruence which is G-closed under some G E Oo. We call such algebras 

O0-regular .  

Definition 7: A variety O is called O0-special,  if every pair of O0-regular 

algebras H1 and //2 with sufficiently large sets of generators are isomorphic 

whenever the semigroups End H1 and End H2 are isomorphic. 

THEOREM 9: Let a variety 0 be special under a class 00; let G1 and G2 be 

algebras in 0o and suppose that the categories Ko(G1) and Ko(G2) are 

isomorphic. Then the algebras G1 and G2 are geometrically equivalent. 

The following question is of interest in the framework of this theorem. 

PROBLEM 2: Let 0 be the classical variety over a field P, and let H1 and H2 be 

two finitely generated semisimple algebras in 0. Under which conditions does an 

isomorphism between the semigroups End H1 and End H2 imply an isomorphism 

between the algebras H1 and H2 ? 

In the classical case the class 00 consists of all fields in O. Thus, all regular 

algebras in O are semisimple. 

3.2. O-ABELIAN GROUPS. Finally, let us consider a situation when O is the 

variety of all Abelian groups. In this case isomorphisms of categories of varieties 

are realized by additive functors. 

THEOREM 10: / f O  is a variety of Abelian groups, and G1 and G2 groups in 0,  

then the categories Ke(G1) and Ko(G2) are isomorphic if and only if G1 and 

G2 are geometrically equivalent. 

This theorem follows from Theorem 8 on the basis of the known result [3] and 

from Theorem 9 by an application of the results in [4]. 

The general problem is to consider for O a variety of modules over a commuta- 

tive ring K. This problem seems to be extremely interesting. Theorem 10 treats 

the case when the ring K is the ring of integers. 
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